The asymptotic shape of the branching random walk
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1 Introduction

Notations.

Let’s think about branching random walk on R™. An initial ancestor starts at the origin.
{Z} = {2} a set of positions of the first generation people. All initial ancestors can
make first generation people in positions in {Zﬁl)}. Assume that And assume that the expected
number of people in the first generation is strictly greater than 1.

{ZT(:)}: set of positions of the people in n-th generation.

$" . o—field generated by all the births in the first n generations.

Given §", the point process formed by the children of an n-th generation person at X has the
same distributions as the process with points {Zﬁl) + X}

Let S be the event that there are people in every generation.

Let I = @ and for each n, 2™ be the set of points {Iﬁf)}

™ : the convex hull of 22"

If x,y € R™, (x,y) is their inner product and ||z|| is the Euclidean norm of z. The unit sphere
is S"! = {X : ||z|| = 1} and the closed ball of radius r, B, = {z : ||z|| < r}.

The function k(f) on R™ is defined by

k(0) =log E [Z:exp(—& Zﬁ”)]



k(0) is a number of initial ancestoers and assume that k(0) > 0.

Let the measure g be defined by g(D) = E[f{r : Z ) e 2}] where D C R™ then

exp k() = E{Ze_w’zﬁl))] - /exp<—9,X>dg(X)

r

This is a Laplace stileltjes transform of g.(Note that Z(f = [;7 f(t)e~stat). Also k(0) is a
convex function and let B is a convex set(it is possibly empty.) such that k(6) is finite.

We will consider when B is not empty and 0 € intB. B is empty when the number of first

(1)

generation people are infinite and 0 ¢ int B when there exists Z» ' such that its norm is infinite.

The function £ on R" is given by

{(y) = inf{k(0) + (0,y) : 0}

Let Z(a) be
P(a) ={y:¢{(y) = a}

and let Z(0) = &

2 Multivariate Laplace-Stieltjes transforms

Lemma 2.1. (i) Z(a) is a closed convez set and P (a) = Ng<a P (d).
(i1) If a < k(0) then P (a) is non-empty and int P (a) C Ug=q P (d).

(73) if a < k(0) then intZ(a) is non-empty if and only if intA is non-empty.

Lemma 2.2. If0 € intB then & (a) is compact.



3 The shape of "

Theorem 3.1. For any a < 0, 2™ C P(a) for all but finitely many n on S.

Theorem 3.2.
int? C liminf ™ C limsup #™ c 2 a.s. on S

where lim inf 72 = Um>1 Nism A and lim sup " = MNp>1 Um>n P AW

Example 3.3. Let’s think of branching random walk in R!. It starts with one initial ancestor
at the origin and {Z"} ¢ {=1,0,1} with P(-1 € {Z"}) = P(1 € {Z"}) = p and P(0 €
{ZM}) = 1. Then

k(0) =log(e ’p+ep+1)

y is the right most point of &, when y is minimum (or infimum) of k(0)/6 where 6 < 0. We can

draw a graph of it. When p =1, y = 1 so that & = [—1,1]. When p =0, y =0 and & = {0}.

Proof. (Proof of theorem 3.1) Let’s assume B is not empty. For any h : R® — R,

[thn 3" 1} Z/ ZM + X)dg(X)

In particular
B| S expl-0.28)5 | = 3 [ exp(-0.250 + X)ag(x) = exp h(6) 3 exp 0,252
Tn Tn—1 Tn—1

So,
E [ Z exp(—0, ZS>1 = expnk(0)



Hence, when 6 € B,

1
E{Z w =1 for each n

Tn eXp n(k<0) + <97 L":LL >)
Let ©, be the event that 2™\ 2 (a) is non-empty, where a < 0 is fixed. Take IZ-(n) € 20N\ P(a)
when €2,, occurs.
By the definition of £(y), if £(y) < oo, there exists 0 such that {(y) < k(0) + (0,y) < &(y) +Ine
where ¢ > 1 and e% < 1. Since I ¢ 2(a),

1 1
oy = o)
exp(k(0) + (0, ;")) eexp&(L;)

1
Z -
ee?

For each ]i(n), choose corresponding 6; such that 5(12-(71)) < k(9) + (0, ]i(n)> < f(]i(m) +Ine. Now

we have IZ»(") and 6; such that g{i} = #{j} and when i = j, above relation holds.

it ={i} = ZE{Z 1 9“]<n>>)n}

j (exp(k(6;)) + (s j

- E{Z 1 1¢">>)n]

i (exp(k(6:)) + (6:, 1;

1
> P@”)E{Z (exp(k(6) + (0 177"

> P(Q) ) (") = P(Q)4{i}(ee”) ™

i

.

Thus, we have

P() < (ee®)”

Theorem 3.4. (Borel Cantelli lemma) If Ey, Es,--- be a sequence of events in some probability
space. If the sum of the probabilities of E,, is finite and )"~ | P(E,) < oo, then the probability

that infinitely many of them occur is 0, i.e. P(limsup,,_,. E,) =0

By Borel Cantelli lemmma, 2™ C 22(a) for all but finitely many n on S. O]



Proof. (Proof of theorem 3.2) By lemma 2.1, #(a) is a closed convex set. For sufficiently
large n, 2™ c #™ C P(a) by theorem 3.1. For any a < 0, there exists N, such that
Umsn, 2™ C P(a). Since limsup ™ C Upsn s for any N, limsup #™ C P(a) for
any a < 0. By lemma 2.1, limsup " C 2.

Since liminf ™ C limsup 4™ is trivial, it suffices to show that int% C liminf ™. For

this, we have to use 1 dimensional result.

Theorem 3.5. Suppose n = 1, i.e. R. and k(0) < oo for some 0 > 0. Let log(u(a)) =
= inf{]ﬁn) :r}. Then, AR

inf{fa+k(0) : 0 > 0}, v =inf{a: pu(a) > 1} and ]r(xﬁzl Lo =Y a.5. on S.
The important obesrvation The projection of the branching random walk on R™ onto any
subspace of R™ gives another branching random walk.

Let’s suppose 0 € intB. By lemma 2.2, &2 is compact. Since 0 € intB, for any y € R", there

exists # > 0 such that 6y € S so that k(fy) < co. Let
v(y) = inf{a : inf{k(fy) +0a : 6 > 0} >0

By theorem 3.5, there exists a sequence {I™} such that (I™ y) — y(y) a.s. on S.

A point E in the convex set D is called an exposed point if there exists a supporting plane
{z: (z,y) = Kk} to D for which Dn{z: (z,y) =k} =E.

Suppose that {z : (x,y) = Kk} is a supporting plane to & such that & C {z : (z,y) > k}. By
lemma 2.1 (i), for any € > 0, Z(a) C {x: (y,x) > k—¢} for a < 0 sufficiently small. By theorem
3.1, I™ € P(a) C {x: (y,x) >k — ¢} for large n and (I™ y) — ~(y). Therefore, v(y) > k — €.
Since € is arbitrary y(y) > k.

Take x € intZ. By lemma 3.(ii) intZ(0) C Ugs0Z(d). x C Z(d) for some positive d. There-
fore, {(x) > 0. For all real 6, k(fy) + 6(y,x) > 0. By definition of y(y), v(y) < (y,z). Since
{z : (x,y) = K} is a supporting plane to &, we can choose x such that v(y) < (y,z) < Kk + €.

Thus, 7(y) < k+ € and kK = v(y).



Any supporting plane to & has the form {z : (z,y) = y(y)} for some y € S. For any exposed
point E of &, Jyy € B such that ZN{z: (z,5) =v(v)} = E.
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Figure 1

Now we take {I(™} satisfying theorem 3.5 with y = g, then by theorem 3.1, {I™} c 2™
Z(a) for all but finitely many n and £ (a) is bounded. Thus, {I™} is bounded. Any accumu-
lation point of it must lie in & (a) C Z.

Let 2, be an accumulation point of the sequence. There is a subsequence of {I™} such that
(I,S,"),yo> — (20,Y0) = Y(yo). Thus, accumulation point lies in & and {z : (z,40) = ¥(yo)}. It
means zg = F and the whole sequence must converge to E because there is only one accumula-
tion point in a sequence {(I™,yo)}. Therefore, ||[I™ — E|| = 0 as n — oo a.s. on S.

Let Ey,---, Ex be exposed points of & and let 7 (E},--- , Ex) be their convex hull. We can

choose n; such that HEZ — Ii(k)‘ < e when k£ > n;. Thus,

int%(Elv e 7EN) - Znu%p(I{lzv e 7I]7\L/Ni> + Be C ngmax{nL...,nN}%(n) —+ Be

C liminf " + B,



Thus, int#(E,--- , Ey) C liminf 2™ a.s. on S.

As N increases, int 7 (Ey, Fa, - - - Ey) approximates to int 2.

int? C liminf 2™ a.s. on S
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